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CHAPTER 4  
 

 

MODEL OF THE IMMERSION OF A SPHERICAL 

TUMOUR WITH A NECROTIC CORE INTO A 

NUTRIENT BATH 

 
 

4.1 Introduction 

 

       

       This chapter presents avascular tumour models that have been studied extensively in 

the last three decade (Adams & Maggelakis, 1989; Ward & King, 1997; Ward & King, 

1999; Sherrat & Chaplain, 2001; Ward & King, 2003; Jiang et al, 2005). Although almost 

all studies reach similar conclusions that avascular tumour can only grow up to a limited 

size, the saturation mechanisms that are assumed in different models are not same. 

Depending on nutrients concentration tumour cells are supposed to be in one of the three 

or stages: proliferating, resting or dead. While the tumour expands, the nutrient 

concentration at the center falls below a critical level. The cell proliferation rate will be 

decrease which causes a slow growth rate. Eventually, these interior cells can die off, 

creating what is known as a necrotic core. Although a significant progress in modeling 

tumour has been achieved by now, most of the solving methods are based on numerical 

approach. Hence, an analytical approach is strongly needed. 

       

        In recent years, approximate analytical schemes such as Adomian Decomposition 

Method (ADM) (Adomian, 1988) and Homotopy Perturbation Method (HPM) (He, 1999) 

have been the source of a lot of research activity. The schemes generate an infinite series 
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of solutions to a wide class of linear and nonlinear differential equations and do not have 

the problem of rounding error (Adomian, 1988; He, 1999; He, 2006a; He, 2006b; 

Wazwaz, 2005; He, 2008; Wu et al, 2009). However, only few works deal with the 

comparison of these methods (Sadighi & Ganji, 2007; Biazar et al, 2008; Saghi & Ganji, 

2008; Oziso & Yildirim, 2008; Siddiqui et al, 2010). In this work, we examine the 

performance of the ADM and HPM when applied to spherical tumour with a necrotic 

core when immersed in the nutrient bath. 

 

4.2 Mathematical background 

 

The model presented in this chapter is a continuum, deterministic and time-dependent 

problem for nutrient diffusion given as (Bellomo, 2006): 
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 where D ia a diffusion coefficient,   is a depletion rate, C  is a nutrient concentration 
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2 1
 represents the Laplacian in spherical coordinates. Eq. (4.2) 

represent a no flux condition on the interior boundary where there is no flux of nutrient 
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into the core of the tumour. Eq. (4.3) represents an external nutrient concentration of  EC

and Eq.(4.4) represents an initial distribution function  with the flexibility of using a 

polynomial of  degree  1, 2 or 3. The polynomials evaluate to aC  at  ar  , and  bC  at  

br  .It can be seen that i , i = 1, 2 and 3 are defined as:- 

 

Linear:   023   ,  
ba

CC ba




1   , 10  bCb                                                (4.5) 

Quadratic: 03    , 
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Cubic   : 
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We defined a new dependent variable as 

 

                         trrctrxu ,,                                                                                        (4.8)            

 

Changing to Cartesian coordinates for   arrx  , Eqs. (4.1 - 4.4) are now transformed 

into, 
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                      EbCtLu ,     ,                   Lx       ,      0t                                      (4.11) 
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                         



3

0

0,
i

i

i axaxxu  ,      Lx 0  ,       0t                            (4.12)     

where abL  . 

 

In order to obtain the approximate solution, Eq. (4.9) is integrated once with respect to t  

and using the initial condition we obtained  
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We set    uuF                                                                                                         (4.14) 

In Eq. (4.13), we assume  xf   is bounded for all x  in    TTJ ,0  and 

Ttmt   ,0,'                                                                                              (4.15) 
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                       11 T                                                                                       (4.16) 

 

 

4.3.  Adomian Decomposition Method (ADM) 

 

The Adomian decomposition method is applied in Eq. (4.9): 
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                                     0 uDuuL xxt                                                                   (4.17) 

where   

                                         
t

Lt



                                                                              

 

is an integrable differential operator with 

 

                                           dtL
t

t 


0

1 .                                                                     

 

 

Operating on both sides of Eq. (4.13) with the integral operator 1L defined by Eq. (4.15)  

leads to  

                                     txutxDuLxftxu xxt ,,)(,
1




                                      (4.18) 

 

where    0,xuxf  . 

Following the ADM method, the solution can be defined by the series form (Adomian, 

1994). 

                                     
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Substituting Eq. (4.17) into (4.16) gives 
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In order to solve Eq. (4.18), the following recurrence relation is proposed 

 

                                            0,0 xuxfu                                                                (4.21) 
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t
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0

1 , ,
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Having determined the components 0u , 1u , 2u , …the solution u in a series form defined 

by Eq. (4.19) follows immediately. 

 

4.4  Homotopy Perturbation Method (HPM) 

 

In order to solve Eq. (4.9) with the HPM method, we construct the following homotopy: 
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where ]1,0[p  is an embedding parameter and o is an arbitrary initial p 

approximation satisfying the given initial condition. Suppose the solution of Eq. 

(4.24) to be in the following form:  
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           ......3

3

2

2

10  vpvppvvv                                                         (4.25) 

Substituting Eq. (4.25) into Eq. (4.24) and equating the coefficients of the terms with the 

identical power of p: 
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Solving Eq. (4.26), we have the recursive relation as follows: 
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4.5 Existence and convergence of ADM and HPM 

 

Theorem 4.1: Let 10  , then Eq. (4.9) as a unique solution. 

 

  Proof: Let u  and *u be two different solutions of Eq. (4.13) then  
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From which we get   01 *  uu . Since 10  , then 0*  uu . Implies *uu 

and this completes the proof.    

 

Theorem 4.2: The series solution    





0

,,
i

i txutxu  of Eq. (4.9) using ADM converges 

if 10  ,   txu , .  

 

Proof: Denote as   .,JC  the Banach space of all continuous functions on J with the 

norm   Jtf t  max . Define the sequence of partial series  nS ; Let nS and mS be 

arbitrary partial sums with .mn  We prove that nS is a Cauchy sequence in this Banach 

space:    
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From Kalla (2008), we have 
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From the triangle inequality, we have  

mn SS  1121 .....   nnmmmm SSSSSS  

                  01

11 ..... SSmnmm            

                  01

12 .....1 SSmnm    

                  txu
mn

m ,
1

1
1



















      
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  ,,1 txu so as m then .0 mn SS  We confidence that nS is a Cauchy 

sequence in  JC , therefore the series is converges and the proof is completed. 

 

Theorem 4.3: If   ,1, txum , then the series solution    





0

,,
i

i txutxu by using HPM 

converges to the exact solution of Eq. (4.9). 

 

Proof:  We set      
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4.6   Numerical experiment 

 

In this section, we compute numerically Eq. (4.9) by the ADM and HPM method.  

From Eq. (4.9): 
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subject to the initial condition: 
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4.6.1  ADM method 

From Eqs.(4.21 – 4.22), we can obtain the first four terms of the solution: 
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(4.32) 

 

4.6.2 HPM method 

Following the HPM method, from Eqs. (4.27 – 4.28), we obtain the first four terms, 
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(4.36) 

 

It is obvious that the first four terms approximate solutions (Eqs. (4.29 – 4.32)) obtained 

using ADM are the same as the first four terms (Eqs. (4.33 – 4.36)) of the HPM.  Figures 

4.1 and 4.2 show the concentration of nutrient for fixed radial distance against time which 
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were plotted from Eqs. (4.29 – 4.32) and  Eqs. (4.33 – 4.36) for ADM and HPM, 

respectively. Both methods show the similar pattern of diffusion of nutrient. The 

concentration increases as time increases. When placed into a nutrient bath with high 

concentration levels, the tumour absorbs nutrient quickly. However, different rate of 

depletion will affect the nutrient absorption. Nevertheless, despite the presence of 

depletion factor, the tumour still absorb nutrient from its environment and always have 

more nutrient near the tumour boundary.  

 

 

Figure 4.1. Concentration verses time for fixed radial distance of r = 0.35 at different  

                   depletion rate values via ADM  
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Figure 4.2. Concentration verses time for fixed radial distance of r = 0.35 at different  

                   depletion rate values via HPM
 

 

4.7  Summary 

We have analyzed the behavior of nutrient concentration diffusing into a spherical 

tumour with a necrotic core via ADM and HPM. The numerical results that we have 
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approximation is accurate. Furthermore, as the methods do not require discretization of 

the variables, i.e. time and space, it is not affected by computation round off errors and 

one is not faced with necessity of large computer memory and time.  A clear conclusion 

can be drawn from these results that both solutions are identical in form. Our results are 
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more general than Bellomo (2006) since we are taking the depletion term into account 

which Bellomo (2006) didn’t. 
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