CHAPTER 4

MODEL OF THE IMMERSION OF A SPHERICAL
TUMOUR WITH ANECROTIC CORE INTO A
NUTRIENT BATH

4.1 Introduction

This chapter presents avascular tumour models that have been studied extensively in
the last three decade (Adams & Maggelakis, 1989; Ward & King, 1997; Ward & King,
1999; Sherrat & Chaplain, 2001; Ward & King, 2003; Jiang et al, 2005). Although almost
all studies reach similar conclusions that avascular tumour can only grow up to a limited
size, the saturation mechanisms that are assumed in different models are not same.
Depending on nutrients concentration tumour cells are supposed to be in one of the three
or stages: proliferating, resting or dead. While the tumour expands, the nutrient
concentration at the center falls below a critical level. The cell proliferation rate will be
decrease which causes a slow growth rate. Eventually, these interior cells can die off,
creating what is known as a necrotic core. Although a significant progress in modeling
tumour has been achieved by now, most of the solving methods are based on numerical

approach. Hence, an analytical approach is strongly needed.

In recent years, approximate analytical schemes such as Adomian Decomposition
Method (ADM) (Adomian, 1988) and Homotopy Perturbation Method (HPM) (He, 1999)

have been the source of a lot of research activity. The schemes generate an infinite series
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of solutions to a wide class of linear and nonlinear differential equations and do not have
the problem of rounding error (Adomian, 1988; He, 1999; He, 2006a; He, 2006b;
Wazwaz, 2005; He, 2008; Wu et al, 2009). However, only few works deal with the
comparison of these methods (Sadighi & Ganji, 2007; Biazar et al, 2008; Saghi & Ganji,
2008; Oziso & Yildirim, 2008; Siddiqui et al, 2010). In this work, we examine the
performance of the ADM and HPM when applied to spherical tumour with a necrotic

core when immersed in the nutrient bath.

4.2 Mathematical background

The model presented in this chapter is a continuum, deterministic and time-dependent

problem for nutrient diffusion given as (Bellomo, 2006):

%=DAZC—7C : a<r<b , t>0 (4.1)

€ _y , r=a , t>0 (4.2)

or

Cbt)=C. , r=b , t>0 (4.3)
3

C(r0)=>er' , a<r<b , t=0 (4.4)

i=0

where D ia a diffusion coefficient, y is a depletion rate, C is a nutrient concentration

and A’C :izag( zz—cj represents the Laplacian in spherical coordinates. Eq. (4.2)
r? or r

represent a no flux condition on the interior boundary where there is no flux of nutrient
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into the core of the tumour. Eq. (4.3) represents an external nutrient concentration of C.
and Eq.(4.4) represents an initial distribution function with the flexibility of using a

polynomial of degree 1,2 or 3. The polynomials evaluate to C, at r=a, and C, at

r =b.lt can be seen that «;, 1 =1, 2 and 3 are defined as:-
. C,-C
Linear: a,=a,=0, a, = ;—bb , o, =C, —ba, (4.5)
P Cb _Ca 2
Quadratic:ar, =0 , a, = (a—b)2 , oy =—2aa, , a,=C, —a‘a, —aq, (4.6)
: 2(c, -C,) —6a,(a+b)
Cubic : a, = O ,a,=——>——2 o =-3a°a, - 2aa, ,
° a®-b®+3ab?-3ba?’ "’ 4 “ 370
a, =C, —b’a, —b’a, —be, 4.7)

We defined a new dependent variable as

u(x(r)t)=rc(r,t) (4.8)

Changing to Cartesian coordinates for x(r)=r—a, Egs. (4.1 - 4.4) are now transformed

into,
ou o°u
—=D—- , O<x<L , t>0 4.9
% Pz M (4.9)
a li_o x=0 , t>0 (4.10)
or a
u(L,t)=bC. x=L , t>0 (4.11)
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u(x,O):(x+a)iozi (x+a)), O<x<L, t=0 (4.12)

i=0

where L=b-a.

In order to obtain the approximate solution, Eq. (4.9) is integrated once with respect to t

and using the initial condition we obtained

u(x,t)=1()+ O azgi):’t)dt o Julx,tt (4.13)

We set F(u)= (4.14)

In Eq. (4.13), we assume f(x) is bounded for all x in J=[0,T|T e®) and

t—z|<m',VO<tz<T (4.15)
2u

The  terms pvl and  F(u) are  Lipschitz  continuous  with
X

o°u  ou’

v gL1|u—u*|,‘F(u)—F(u*lsLz‘u—u*‘ and

a=T(mL +m'L,)

p=1-T(l-0a) (4.16)

4.3. Adomian Decomposition Method (ADM)

The Adomian decomposition method is applied in Eg. (4.9):
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Lu-Du, +mu=0 (4.17)

where

Operating on both sides of Eq. (4.13) with the integral operator L™ defined by Eq. (4.15)

leads to

u(x,t)= f(x)+L " (Du, (x,t)—(x1)) (4.18)

where f(x)=u(x,0)

Following the ADM method, the solution can be defined by the series form (Adomian,

1994).

u(x,t)= iun(x,t) (4.19)

n=0

Substituting Eq. (4.17) into (4.16) gives
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iunxt u(x,0)+ L, D(iu% tj —ﬂ_t‘liun(x,t) (4.20)

n=| n=0
In order to solve Eq. (4.18), the following recurrence relation is proposed

u, = f(x)=u(x,0) (4.21)

Ua()=1[0@, ), -, B, wnzo0 (4.22)

Having determined the components u,, U, U,, ...the solution u in a series form defined

by Eq. (4.19) follows immediately.
4.4 Homotopy Perturbation Method (HPM)

In order to solve Eq. (4.9) with the HPM method, we construct the following homotopy:

v au, o o%
H(v,p)=(1-p E—EJJF p[a_Dﬁ WJZO (4.23)
or
oV du, o%v AUy |
P L L (42

where pe[01] is an embedding parameter and v is an arbitrary initial p

approximation satisfying the given initial condition. Suppose the solution of Eq.

(4.24) to be in the following form:
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2 3
Vo =Vy+ pv;, + PPV, + PPV e

(4.25)

Substituting Eq. (4.25) into Eq. (4.24) and equating the coefficients of the terms with the

identical power of p:

o _Z0 -0

P ot ot

ov. o%v, au
.t _p-2 +—2=0
p 8t axg WO 8’[
2.8\/2 azvl
P P e Tl
3.8\/3 62\/2
P P TP

n 8V"—D82V"’1+ =0

G P AL

Solving Eq. (4.26), we have the recursive relation as follows:

v, = F(x)=u(x,0)

[D(vn)xx—wn}ir, vn>0

O —_—y

Vn+1 (X’ t) =

(4.26)

(4.27)

(4.28)
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4.5 Existence and convergence of ADM and HPM

Theorem 4.1: Let 0 <« <1, then Eq. (4.9) as a unique solution.

Proof: Let u and u” be two different solutions of Eq. (4.13) then

Dj{a u(x,t) 0% (x ’t)}dt—;/j([[u(x,t)—u*(x,t)]dt

dt+yj|u X,t)—u*(x,t)dt

d

<T(m'L +m'L, Ju—u*

{a u(x,t) d%u ax( )}

OX?

=aju—u?|
From which we get (1—aXu —u*‘ <0. Since0 <« <1, then ‘u —u*‘ =0. Implies u=u*

and this completes the proof.

X, t of Eqg. (4.9) using ADM converges

Theorem 4.2: The series solution u X, t = Zu
i=0

if 0<a <1, u(x,t) <o

Proof: Denote as (C[J] ) the Banach space of all continuous functions on J with the
norm |f(t)=maxV, € J. Define the sequence of partial series {S, }; LetS and S, be

arbitrary partial sums with n>m.We prove that S is a Cauchy sequence in this Banach

space:
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[Ss =S| = max(S, =S|

vted

vted

n E[Du dt — _j).yu,dtj
o

I=m

= MmaX
Vvtel

From Kalla (2008), we have

n-1

U = Gz(sn—l)_Gz(Smfl)

=m

-1

>

0

IS, = Snll = max|D[[G*(S, 1)~ G* (S, o Jldt =7 [[F (S, 1)~ F (S, )t

<alS, =S,

Let n=m+1, then

S0 -S4l <als, S

m+1 m—l”

<a?||Spy = Snl|

s|D|jGZ(snl)—Gz(Smlet+I7lle(Sn1)—

F (S, Jdt
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<a™|s, -S|

From the triangle inequality, we have

”Sn _Sm” = ”S _Sm||+||sm+2 _Sm+1||+ """ +||Sn N Sn—ln

m+1

< (am +a™ +a”*m*1)|81 =S|

< 0{”‘(1+0¢+052 + o +0¢”"m_1]|8l —S,|

Since O<a<1, we have (1—a“‘m)<1,then Is,—s ||<—max

T me u(xt]. But

lu,(x,t) <oo,50 as m—>oothen [S,—S,|—0. We confidence that{S,}is a Cauchy

sequence in C[J ] therefore the series is converges and the proof is completed.

x,t)by using HPM

Theorem 4.3: If |u, (x,t) <1, then the series solution u(x,t)="> u,(
i=0

converges to the exact solution of Eq. (4.9).

Proof: We set
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zgui(x,t)

n+l

n+1 ZU X, t

So,
|¢n+1(x’t)_¢n (X’t) = |¢n +U, _¢n|

=|un|

mkl

ska(;DU

dt+|y|J.|um cafdt

Thus

lem x,t)— g, (x)] < (m - 1)a|f(x]§;a”

Since 0 < a <1, therefore [imu, (x,t)=u(x,t)

n—oo

4.6 Numerical experiment

In this section, we compute numerically Eq. (4.9) by the ADM and HPM method.

From Eq. (4.9):

2
%U:Dz—l,j—yu , O<x<L , t>0
X

subject to the initial condition:

(4.27)

39



U, (x,t)=u(x,0)= (x + a){ao + o (x+a)+a,(x+a) +a,(x+ a)3}

(4.28)
46.1 ADM method
From Egs.(4.21 — 4.22), we can obtain the first four terms of the solution:
Uy (x,t)=u(x,0)= o, (x + @)+ o, (x + a)* + ar, (x +a)° + a5 (x +a)’

(4.29)

u,(x,t)= {(Zal +6a, (X +a) +12a, (X + a)z)D—;/(oc0 (x+a)+ o, (x+a)’ +a,(x+a)’ +

o, (x+a) ]}t (4:30)

u,(x,t) = {24a,D —7[(20:1 +6ar, (X +a) +12a, (X + a)2X1+ D)-a, (x+a) +a, (x+a)° +

a,(x+a)° +a3(x+a)4]}% s

U3 (x,t) = =240, (14 D) + 20, +6r, (X +@) +12a; (X + )® +24c,D — y[(2c, + 6, (x +a) +

120, (x + a)2X1+ D)—y(ao(x+a)+ a,(x+a)’ +a,(x+a)’ +a3(x+a)4)]}%

(4.32)

46.2 HPM method

Following the HPM method, from Eqgs. (4.27 — 4.28), we obtain the first four terms,
40



Vo =Uy =, (x+a)+ay(x+a)° +a,(x+a)’ +a(x +a)’ (4.33)

t 82V ]
v, = || D—2—-mw, (dt
NIEEE
={(2a1+6a2(x+a)+12a3(x+a)2)D—y(ao(x+a)+al(x+a)2+a2(x+a)3+

a3(x+a)4]}t

(4.34)

o 0%
v, :J-(D ale —Wlet

0

— {240,D — y|(2ct, + 6z, (x + @) +1201, (X +@)? JL+ D) —az, (X +a) + o, (X +a) +

a,(x+a)° +a3(><+a)4]}§ (4.35)

NGRY
A :I(D 8x22 —WZJdt

0
— —y{24a,(1+ D)+ 2, +6a, (X + @) + 120z, (X + @)% +24a;D — y[(2ct, + 6z, (X + ) +

3

1201, (X + a)2X1+ D)—;/(ao(x+a)+ a,(x+a)’ +a,(x+a)’ +a3(x+a)4)]}%

(4.36)

It is obvious that the first four terms approximate solutions (Egs. (4.29 — 4.32)) obtained
using ADM are the same as the first four terms (Eqgs. (4.33 — 4.36)) of the HPM. Figures
4.1 and 4.2 show the concentration of nutrient for fixed radial distance against time which
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were plotted from Egs. (4.29 — 4.32) and Eqgs. (4.33 — 4.36) for ADM and HPM,
respectively. Both methods show the similar pattern of diffusion of nutrient. The
concentration increases as time increases. When placed into a nutrient bath with high
concentration levels, the tumour absorbs nutrient quickly. However, different rate of
depletion will affect the nutrient absorption. Nevertheless, despite the presence of
depletion factor, the tumour still absorb nutrient from its environment and always have

more nutrient near the tumour boundary.

r=0.35, a=0.1, b=1.0, C,=3E-07,
8.00E-03 C,=3E-09, C,=3E-05, D=5E-04 m

7.00E-03
6.00E-03 u
5.00E-03 [

4.00E-03 [ |
Wy=0.1

3.00E-03 ] y=0.01

Concentration u (t)
[ |

2.00E-03 - L
1.00E-03

[ ]
0.00e+00 AR T A A A A A
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Figure 4.1. Concentration verses time for fixed radial distance of r = 0.35 at different

depletion rate values via ADM
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Figure 4.2. Concentration verses time for fixed radial distance of r = 0.35 at different

depletion rate values via HPM

4.7 Summary

We have analyzed the behavior of nutrient concentration diffusing into a spherical
tumour with a necrotic core via ADM and HPM. The numerical results that we have
obtained justify the advantage of both methodologies, even in the few terms,
approximation is accurate. Furthermore, as the methods do not require discretization of
the variables, i.e. time and space, it is not affected by computation round off errors and
one is not faced with necessity of large computer memory and time. A clear conclusion

can be drawn from these results that both solutions are identical in form. Our results are
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more general than Bellomo (2006) since we are taking the depletion term into account

which Bellomo (2006) didn’t.
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